Search Results/Filters    

Filters

Year

Banks



Expert Group











Full-Text


Issue Info: 
  • Year: 

    2012
  • Volume: 

    2
  • Issue: 

    12
  • Pages: 

    71-77
Measures: 
  • Citations: 

    1
  • Views: 

    96
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 96

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2011
  • Volume: 

    7
  • Issue: 

    15
  • Pages: 

    15-29
Measures: 
  • Citations: 

    0
  • Views: 

    349
  • Downloads: 

    191
Abstract: 

COMPUTATIONAL INTELLIGENCE approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models proposed in several past decades, it is widely recognized that exchange rates are extremely difficult to forecast. Artificial Neural Networks (ANNs) are one of the most accurate and widely used forecasting models that have been successfully applied for exchange rate forecasting. In this paper, a hybrid model is proposed based on the basic concepts of artificial neural networks in order to yield more accurate results than the traditional ANNs in short span of time situations. Three exchange rate data sets—the British pound, the United States dollar, and the Euro against the Iran rial-are used in order to demonstrate the appropriateness and effectiveness of the proposed model. Empirical results of exchange rate forecasting indicate that hybrid modelis generally better than artificial neural networks and other models presented for exchange rate forecasting, in cases where inadequate historical data are available. Therefore, our proposed model can be a suitablealternative model for financial markets to achieve greater forecasting accuracy, especiallyin incomplete data situations.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 349

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 191 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2014
  • Volume: 

    39
  • Issue: 

    2
  • Pages: 

    1-10
Measures: 
  • Citations: 

    1
  • Views: 

    111
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 111

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Journal: 

BIOCHEMICAL GENETICS

Issue Info: 
  • Year: 

    2025
  • Volume: 

    63
  • Issue: 

    2
  • Pages: 

    960-983
Measures: 
  • Citations: 

    1
  • Views: 

    2
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 2

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2016
  • Volume: 

    3
Measures: 
  • Views: 

    146
  • Downloads: 

    97
Abstract: 

IN THIS PAPER OPTIMAL TRAJECTORY GENERATION FOR A SYSTEM OF TWO COOPERATIVE SERIAL MANIPULATORS IS STUDIED. FIRST THE KINEMATIC REDUNDANCY PROBLEM IS EXPLAINED AND THE USING PONTRYAGIN’S MINIMUM PRINCIPLE THE OPTIMAL PATH TO RESOLVE SYSTEM REDUNDANCY IS ACHIEVED. FOR TIME INTEGRATION OF THE EQUATIONS AND SOLVING THE TWO POINT BOUNDARY VALUE PROBLEM, A SHOOTING METHOD IS EMPLOYED AND THE INITIAL VALUES ARE UPDATED BASED ON TAYLOR ITERATION LOOP. AN ARTIFICIAL NEURAL NETWORK IS DESIGNED AND TRAINED TO FIND THE OPTIMAL SOLUTION FOR NEW DESIRED TRAJECTORY.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 146

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 97
Author(s): 

Issue Info: 
  • Year: 

    2019
  • Volume: 

    39
  • Issue: 

    3
  • Pages: 

    638-672
Measures: 
  • Citations: 

    1
  • Views: 

    41
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 41

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2017
  • Volume: 

    8
  • Issue: 

    2
  • Pages: 

    71-81
Measures: 
  • Citations: 

    0
  • Views: 

    950
  • Downloads: 

    0
Abstract: 

COMPUTATIONAL INTELLIGENCE techniques have a great potential to solve different COMPUTATIONAL problems in engineering sciences. In this paper, modeling and simulation of down hole drilling motor using the COMPUTATIONAL INTELLIGENCE methods such as artificial neural network (ANN), radial basis function (RBF) and adaptive neuro-fuzzy inference system (ANFIS) is presented. Experimental data are used to train and test the proposed models. The results of the proposed models are compared with the experimental data. The predicated values are found to be in a good agreement with the experimental values. Also, they are very faster than the experimental measurement method. These compact models can reduce the COMPUTATIONAL time while keeping the accuracy of physics-based model and allow the fast and accurate system level simulation and modeling of industrial packages.Finally, using the proposed ANN model, which is the best proposed model, an equation to describe the nonlinear behavior of down hole drilling motor is introduced.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 950

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2016
  • Volume: 

    6
  • Issue: 

    1
  • Pages: 

    1-12
Measures: 
  • Citations: 

    0
  • Views: 

    311
  • Downloads: 

    152
Abstract: 

This study investigates the oil extraction from Pistacia Khinjuk by the application of enzyme. Artificial Neural Network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) were applied for modeling and prediction of oil extraction yield. 16 data points were collected and the ANN was trained with one hidden layer using various numbers of neurons. A two-layered ANN provides the best results, using application of ten neurons in the hidden layer. Moreover, process optimization were carried out by using both methods to predict the best operating conditions which resulted in the maximum extraction yield of the Pistacia Khinjuk. The maximum extraction yield of Pistacia Khinjuk was estimated by ANN method to be 56.52% under the operational conditions of temperature and enzyme concentration of 0.27, pH of 6, and the Ultrasonic time of 4.23 h, while the optimum oil extraction yield by ANFIS method was 55.8% by applying the operational circumstances of enzyme concentration of 0.30, pH of 6.5, and the Ultrasonic time of 4.55 h. In addition, mean-squared-error (MSE) and relative error methods were utilized to compare the predicted values of the oil extraction yield obtained for both models with the experimental data. The results of the comparisons revealed the superiority of ANN model as compared to ANFIS model.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 311

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 152 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

FATTAHI HADI | Nazari Hosnie

Issue Info: 
  • Year: 

    2020
  • Volume: 

    54
  • Issue: 

    2
  • Pages: 

    109-116
Measures: 
  • Citations: 

    0
  • Views: 

    227
  • Downloads: 

    94
Abstract: 

Compared to drag anchors, suction caissons (Q) in clays often provide a cost-effective alternative for jacket structures, catenary, tension leg moorings, and taut leg. In this research, two COMPUTATIONAL approaches are proposed for predicting the uplift capacity of Q in clays. The proposed approaches are based on the combinations of adaptive network-based fuzzy inference system (ANFIS) models (ANFIS-subtractive clustering (ANFIS-SC) and ANFIS-fuzzy c-means (ANFIS-FC)) with metaheuristic techniques (ant colony optimization (ACO) or particle swarm optimization (PSO)). In these approaches, the PSO and ACO algorithms are employed to enhance the accuracy of ANFIS models. In order to develop hybrid models, a comprehensive database from open-source literature is used to train and test the proposed models. In these models, d (diameter of caisson), L (embedded length), D (depth), Su (undrained shear strength of soil), θ (inclined angle), and Tk (load rate parameter) were used as the input parameters. The performance of all models was evaluated by comparing performance indexes, i. e., means squared error and squared correlation coefficient. As a result, PSO and ACO can be used as reliable algorithms to enhance the accuracy of ANFIS models. Moreover, it was found that the ANFIS– subtractive clustering-ACO model provides better results in comparison with other developed hybrid models.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 227

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 94 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    0
  • Volume: 

    11
  • Issue: 

    3
  • Pages: 

    383-396
Measures: 
  • Citations: 

    0
  • Views: 

    214
  • Downloads: 

    0
Abstract: 

زمینه و هدف: این تحقیق به بررسی نحوه پراکنش آلاینده های ناشی از سناریو اشتعال انبار نفت با استفاده از نرم افزار انسیس فلوینت پرداخته است و برای اولین بار در کشور سناریوهای خطرناک و غیرمنتظره انفجار و اشتعال در سایت های نفتی را با استفاده ازاین نرم افزار مورد بررسی قرار داده و هدفش حفظ دارایی ها جانی و مالی مناطق اطراف انبار نفت است. مواد و روش ها: به منظور تعیین میزان آلاینده های حاصل از سوختن مخازن، از نرم افزار Ansys Fluent 15 استفاده شد. این نرم افزار پارامترهای موثر سرعت، جهت باد، دمای محیط، میزان انتشار آلاینده ها و پایداری جو را درنظرگرفته و می تواند غلظت آلاینده های گوناگون را در فواصل مختلف از انبارها پیش بینی نماید. نتایج خروجی این نرم افزار وارد محیط مشینگ شد و درنهایت نقشه پراکندگی آلودگی در محدوده ای به وسعت چهار کیلومتر تا ارتفاع 200 متر به دست آمد. یافته ها: در این پژوهش، تاثیر اشتعال و انفجار انبار نفت بر روی محیط زیست و محیط مسکونی اطراف محوطه انبار مورد تحلیل عددی قرار گرفت. با توجه به جمع بندی نتایج در شرایط بحرانی که سرعت وزش باد بالا باشد، جهت وزش باد تاثیر بسزایی در مناطق تحت تاثیر خواهد داشت، بطوری که افزایش دمای تا حدود 60 درجه سلسیوس و بالاتر و نیز غلظت آلاینده های CO, CO2, NOX, SO2 همگی در فواصلی حدود 800 متر تا یک کیلومتر در مناطق انبار غله کرج، شهرک بنفشه، رزکان نو، محوطه راه آهن کرج، سرحدآباد و شهرک وحدت با توجه به جهت وزش باد به میزان 30 تا 40 درصد بالاتر از استاندارد، مورد انتظار است. نتیجه گیری: نتایج این تحقیق نشان داد اگر آتش سوزی در مخازن رخ دهد. مناطق مسکونی و صنعتی مختلفی در مسیر پخش و پراکنش آلودگی بسیار بالاتر از حد استاندارد می باشند. با توجه به شدت آلودگی تولیدشده و وسعت مناطق درگیر بیماری های تنفسی، خسارت های جانی و مالی قابل پیش بینی است.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 214

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 5
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button